
  

 

  

Abstract—The accurate estimation of the 6-degree-of-freedom 

pose of a target object in the environment plays a pivotal role in 

robot perception, providing a foundation for interaction and 

manipulation between robots and the surrounding environment. 

Nonetheless, traditional vision sensors are prone to diminished 

reliability in visual perception due to environmental factors such 

as lighting conditions and occlusions. Depth sensors, such as 

Time-of-Flight (TOF) and structured light sensors, offer 

promising opportunities for reliable target pose estimation. 

However, accurately determining the pose solely based on a 

single depth image presents significant challenges due to the 

limited availability of rich appearance and texture information. 

To comprehensively address this challenge, we investigate the 

mechanism of feature extraction and representation using depth 

images, along with the utilization of normal angle and point 

cloud information derived from the depth images, to achieve 

robust estimation of the visual target poses. By exploiting the 

latent information within the depth images, including normal 

angles and point clouds, we have developed the DMG6D robust 

target pose estimation framework. Within the DMG6D 

framework, we first employ physical methods to infer the 

normal angle and spatial position of each pixel in the depth 

image. Subsequently, we introduce a three-branch feature 

extraction and a global feature fusion network to enable a 

comprehensive depiction of the target object. Finally, a robust 

pose estimation for the target object is obtained utilizing the least 

squares method. Experimental results emphatically demonstrate 

that the proposed DMG6D surpasses existing algorithms in 

terms of its ability to estimate 6D poses using depth images, 

effectively underscoring the efficacy of our designed depth image 

feature extraction strategy. Access to the code and video is 

available at https://github.com/wangzihanggg/DMG6D.  

I. INTRODUCTION 

The 6-degree-of-freedom (6-DoF) pose estimation of an 
object involves geometrically mapping the object's coordinate 
system to the camera coordinate system, typically represented 
by a transformation matrix encompassing 3D rotation and 3D 
translation of the target object. In various domains such as 
robot interaction [1][2][3], virtual/augmented reality [4], and 
autonomous driving [5][6], accurate estimation of object poses 
is crucial. Robots require pose estimation for grasping tasks, 
interactions in virtual/augmented reality necessitate precise 
object poses for realistic interactions, and vehicles rely on pose 
estimation for obstacle avoidance and navigation. 
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Presently, most 6-DoF pose estimation algorithms are 
based on RGB images[7][8] or RGB-D[9][10][11] image 
inputs. However, these methods heavily rely on color and 
texture information from RGB data, often disregarding the 
geometric information inherent in depth images. Consequently, 
they may struggle in extreme scenarios such as variations in 
illumination or limited color textures, leading to compromised 
performance. Leveraging the geometric structure information 
of objects can offer a promising solution to these challenges. 
Depth sensors, characterized by their sensitivity to object 
geometry and insensitivity to light intensity, align well with 
our objectives. Moreover, with the gradual decrease in the 
price of depth sensors, utilizing depth sensors exclusively for 
6-DoF pose estimation emerges as a viable and cost-effective 
option.  

Figure 1.  Network Structure Comparison 

 
(a) The CloudPose[12] Network. Converting depth maps into point clouds 
and employing point cloud processing networks for feature extraction and 
pose estimation, using only point cloud modality. 

 
(b)The Proposed Multi-Flow Global Feature Fusion Network. With three 
feature information streams—depth, angle, and spatial features—integrated 
throughout the entire process of the three networks, we introduce a fusion 
module based on global features into the full pipeline. This serves as a bridge 
for modality interaction, facilitating better learning representation of target 
objects. 

To achieve stable 6D pose estimation using only depth data, 
a common approach involves transforming the depth image 
into a point cloud and utilizing a Point Cloud Processing 
Network (PCN) for feature extraction in pose estimation [12] 
(Fig. 1.a). However, conventional PCNs may not fully exploit 
all the information within the depth image. For the first time, 
method [13] introduces a feature extraction network tailored to 
point clouds, specifically designed for large scene 
segmentation tasks. In [11], there is an exploration of 
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converting the depth image into a point cloud based on the 
camera's depth conversion factor. The approach employs 
method [13] for robust feature extraction and level-by-level 
fusion of RGB modal features, resulting in stable 6D pose 
estimation. This represents a typical data-driven scheme, as 
point cloud data consist of discrete, point-by-point information 
during the feature extraction process. 

Another approach [14], suggests converting depth images 
into surface normal vector images. This method effectively 
separates the object from the background, leveraging rich 
information about the target object's angle features. The 
surface normal vector angular modality captures the physical 
angular geometric characteristics of the target object. Superior 
results can be achieved by fusing this information with point 
cloud-based data features. As depicted in Fig. 1.b, our method 
integrates the three representations of depth image, normal 
vector angle image, and point cloud through an appropriate 
fusion mechanism. This integration maximizes the effective 
information in the depth data, leading to robust 6D pose 
estimation. 

In this study, we introduce a novel multi-stream global 
feature fusion network designed to perform global fusion at 
each stage of the encoder-decoder, facilitating the learning of 
feature representations from depth data across different 
modalities for 6D pose estimation. The schematic overview of 
our proposed methodology is illustrated in Fig. 1.b. We 
leverage the Swin Transformer [15] to encode features from 
the original depth image and the normal vector angular map. 
Additionally, we employ RandLA-Net [15] for extracting 
features from the point cloud, incorporating layer-by-layer 
complementary feature fusion across these three modalities. 
Specifically, the depth image provides rich dense depth 
information, while the normal vector angle image furnishes 
angle information, both of which facilitate object-background 
separation. On the other hand, the point cloud captures spatial 
structural features of the object. By performing point-to-point 
fusion of dense features derived from depth, angle, and spatial 
structure information, we obtain a comprehensive dense 
feature embedding based on the depth representation. 
Subsequently, we adopt the 3D keypoint detection method 
proposed in [10], utilizing the feature embeddings acquired 
through the aforementioned approach for both 3D keypoint 
prediction of the target object and 6D pose regression. 

To validate the effectiveness of our method, we conducted 
extensive experiments on two widely-used datasets: the 
LineMod dataset and the YCB-Video dataset. The 
experimental results demonstrate that our approach surpasses 
the current state-of-the-art methods relying on depth-input. 

In summary, the key contributions of our work include: 

• We develop the DMG6D framework, which leverages 
depth information along with angle and spatial 
structure information to enable robust feature 
extraction and accurate estimation of the 6 degrees of 
freedom (6-DoF) pose. This is achieved through the 
incorporation of these information sources into a data-
driven neural network algorithm. 

• To address the challenge of extracting robust features 
from multimodal information sources, we propose a 
novel mechanism in the DMG6D framework based on 

global feature fusion of multi-feature streams. This 
mechanism effectively integrates diverse 
representations of depth information to enhance the 
robustness and accuracy of feature extraction. 

• We extensively evaluate our method on benchmark 
datasets, including the LineMod and YCB-Video 
datasets. Remarkably, our approach achieves pose 
estimation accuracies of 98.9% and 97.8% on these 
datasets, respectively. Furthermore, when compared 
to other methods that utilize depth information as 
input, our method demonstrates state-of-the-art 
performance. 

II. RELATED WORKS 

A. Depth Map Features 

Mining robust information from depth images has been a 
prominent research focus within the realm of computer vision. 
For instance, [16][17] employ convolutional neural networks 
(CNNs) directly on Depth Maps to extract features for 
classification and segmentation tasks. Similarly, [14][18] 
compute the normal vector angle of each pixel from depth 
images, utilizing a form of differential histogram for 3D object 
recognition. Moreover, [13][19][20] elevate the depth map to 
point clouds using the camera's fixation matrix, facilitating 
spatial perspective for tasks such as semantic segmentation 
and target detection in large-scale scenes. Motivated by these 
prior works, we leverage the conversion of depth images into 
normal vector angle images and point clouds, respectively. By 
harnessing the distinctive advantages offered by each of these 
three modalities, we aim to achieve robust feature extraction. 

B. 6D Pose Estimation from Depth Map 

With advancements in large-scale instance segmentation 
models and point cloud representation learning, numerous 6D 
pose estimation algorithms leveraging depth data inputs have 
emerged. For instance, Liu et al.'s CATRE [21] employs 
Mask-RCNN [22] to isolate the object of interest from the 
depth map, then feeds it into a ShapeNet pre-trained point 
cloud network for feature extraction. This process is followed 
by matching it with the target object model's point cloud to 
determine the 6D pose. Similarly, Gao et al.'s [12] method 
utilizes the same segmentation network as found in PoseCNN 
[7], coupled with an enhanced version of PointNet [19] for 
point cloud feature extraction and 6D pose regression. In 
contrast, our proposed method thoroughly exploits the depth, 
angle, and spatial structure features available from depth 
images, and integrates them effectively to estimate the 6D pose. 

C.  Multi-Flow Feature Fusion for 6D Pose Estimation 

In the domain of 6D attitude estimation, the synergistic 
fusion of multiple information streams is commonly employed, 
particularly in the bimodal fusion of RGB-D data. Wang et al.'s 
DenseFusion [9] introduces a dense fusion module for RGB-
D features; however, there is a lack of information interaction 
during the feature extraction process. On the other hand, He et 
al.'s FFB6D [11] pioneers the use of an RGB-D two-module 
omnidirectional feature fusion during both the feature 
extraction coding and decoding stages, yielding commendable 
results. To the best of our knowledge, our method represents 
the first instance of applying multi-information stream fusion 
to 6D pose estimation based on depth images. This approach 
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aims to maximize the extraction of depth, angle, and spatial 
structure information inherent in depth images. 

III. METHOD 

Given a depth map, the objective of 6D target pose 
estimation involves determining the transformation matrix of 
the target object from its coordinate system to the camera 

coordinate system. This matrix comprises a rotation matrix, 
denoted as 𝑅 ∈ 𝑆𝑂(3), and a translation matrix, denoted as 
𝑇 ∈ 𝑆𝑂(3). As this task solely depends on the depth image, 
the formulation of the pose estimation algorithm should 
systematically harness the geometric structural information 
inherent in the target object. 

A. Overview 

Figure 2.  The pipeline of DMG6D.  Using Swin Transformer for representation learning on depth maps and normal vector angle maps, and using PCNs 
for representation learning on point clouds. Within the processes of the three networks, we introduce a fusion module based on global features as a 

communication bridge. Subsequently, the extracted robust features are inputted into a 3D keypoint voting module to obtain 3D keypoints for each target 

object, followed by pose recovery through least squares fitting.

We introduce a multi-stream, hierarchical fusion network 
framework to address the problem of 6D attitude estimation 
from depth data, as illustrated in Figure 2. This framework is 
designed to extract features from depth data and progressively 
fuse them using attention networks and Point Cloud Networks 
(PCNs). It employs 3D keypoint localization detection heads, 
which leverage both spatial and channel attention mechanisms 
for keypoint determination, and subsequently utilizes the least 
squares method for pose fitting. More specifically, the Swin 
Transformer is utilized to extract appearance features of 
objects from depth images and images of normal vector angles, 
while the RandLA-Net is employed to extract geometric 
features from point clouds. Throughout the forward 
progression of these three feature streams, a point-to-point 
fusion mechanism is integrated at each level, enabling the 
image and point cloud modalities to independently learn each 
other's embedding representations. Subsequently, the learned 
features at each point are processed through an enhanced 3D 
keypoints detection module, which is based on the attention 
mechanism. The final step involves regressing the pose 
transformation matrix using the least squares method. 

B. Depth image and normal vector image feature extraction 

Figure 3.  Example of Normal Vector Angle Image Transformation. 

Compute the angles 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 between each pixel in the depth map and the 

camera coordinate system, and normalize them to the range [0-255]. 

 

Previous depth-image-based 6D pose estimation 
algorithms tend to directly input the depth image into the 
feature extraction network, but this approach often neglects the 
orientation information of the target object implied by the 
depth image. In order to obtain orientation information and 
local geometric information from depth images, we follow the 
method of [14] to generate for each pixel point in each depth 
image its normal vector angle corresponding to the camera 
coordinate system N with XYZ axes, and this process can be 
described as: 

[

𝑎𝑥

𝑎𝑦

𝑎𝑧

] = [

arccos(𝑁 ⋅ 𝑥)

arccos(𝑁 ⋅ 𝑦)

arccos(𝑁 ⋅ 𝑧)
] (1) 

Subsequently, the obtained angle values (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧) are 

normalized to the range of 0 to 255. These three angle values 
are then utilized to determine the position of each pixel point, 
resulting in the formation of an RGB image-like representation, 
as depicted in Figure 3. 

To effectively capture both the depth features from the 
depth image and the orientation features from the normal 
vector angle image, we propose a encoder-decoder structure 
network as the backbone for feature extraction. Recognizing 
the homology between the two images, we employ shared 
weights for feature embedding extraction. The network 
architecture employs Swin-T [15] (Tiny Swin Transformer) as 
an encoder and UperNet [23] as a decoder to learn multi-scale 
feature representations from both images. 

The Swin-T encoder accepts both depth images and normal 
vector angle images as inputs, with its structure illustrated in 
Figure 4. It comprises four Swin Transformer modules, each 
consisting of an Encoder, Bottleneck, Decoder, and transition 
links. Taking the depth image as an example, it initially 
conducts Patch Partitioning into 4x4 Patches. Following a 
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linear embedding layer and two self-attentive Swin 
Transformer blocks for feature extraction, it undergoes 
downsampling via a Patch Merging layer, thereby completing 
one iteration of feature extraction. Each completed feature 
extraction operation interacts with the other two information 
streams for point-to-point feature fusion, and this process is 
iterated four times to complete the feature extraction for the 
depth image. The feature extraction process for the normal 
vector angle image follows a similar procedure. 

Upon completion of the feature extraction process, we 
restore the feature map size through an upsampling operation 
utilizing UperNet [23]. UperNet executes upsampling based 
on bilinear interpolation and incorporates the Pyramid Pooling 
Module (PPM) from PSPNet [24] as the final layer of the 
feature pyramid. The upsampling operation is conducted three 
times, with each iteration followed by the interactive fusion of 
features from the three modalities (as explained in Section 3.4), 
along with concatenation with the encoder feature embedding. 
Ultimately, the last unsupervised upsampling, utilizing the 
function provided by MMSegmentation, is implemented to 
obtain the final pixel-level feature embedding of the same size 
as the input image. 

Figure 4.  Swin-T Structure Diagram. The encoder for depth maps and 

normal vector angle maps is based on Tiny Swin Transformer (Swin-T), 

which consists of four stages. The network processes the input images 
through cropping to obtain features at four different scales, which are then 

concatenated and fed into the decoder network, as shown in Figure 2. 

Throughout the entire encoding process, the depth maps and normal vector 

angle maps share weights. 

 

C. Point Cloud Feature Extraction 

In the preprocessing stage of the depth image, we initially 
apply a multiscale filling method to address gaps in the depth 
image. Subsequently, we utilize the camera's internal reference 
matrix to transform the depth image, yielding the desired point 
cloud. To extract multi-scale embedded features from the point 
cloud, the point cloud feature extraction network comprises a 
segment of point cloud feature preprocessing CNN, along with 
four iterations of the RandLA-Net [15] feature extraction 
downsampling module and three iterations of the RandLA-Net 
feature extraction upsampling module. Throughout these 
seven up/down-sampling sessions, there are point-by-point 
feature interactions with both the depth image and the normal 
vector angular modality. 

D. Global Feature-Pointwise Fusion Mechanism 

Figure 5.  Global Feature Fusion Module. For each pixel in the depth 

map and normal vector angle map, we locate its k-nearest neighbor pixels in 

the point cloud map and collect their corresponding features from the depth 
feature map and angle feature map. Similarly, we adopt the same approach 

for each point in the point cloud to obtain dense features pointwise. These 

features are then processed through a shared MLP to acquire global 
features, which are subsequently fused with the original feature maps from 

the three modalities, resulting in an updated fusion feature map. 

 
In order to integrate the feature embeddings from three or 

more modalities, we have devised a global feature-based 
pointwise fusion mechanism, as illustrated in Figure 5. This 
study encompasses three modalities: depth map, normal vector 
angle image, and point cloud. Since all three modalities 
originate from the depth image, ensuring alignment between 
pixels and points, we can execute multimodal fusion on a 
pixel-point basis. Specifically, each pixel in the depth image 
and normal vector angle image corresponds to a point in the 
point cloud modality. We employ k-nearest neighbors (kNN) 
to identify the K nearest neighbors of the target point, where 
K is determined by the ratio of the embedding size of the depth 
image/normal vector angle features to the embedding size of 
the point cloud features. These points are then fed into a 
multilayer perceptron (MLP) to capture spatial features 
surrounding the target pixel. This process can be formulated as 
follows: 

𝐹𝑝2𝑔 = 𝑀𝐿𝑃({𝑃𝑖|𝑃𝑖 ∈ (𝑃, {𝑃𝑖}, 𝑘)}) (2) 

Where 𝐹𝑝2𝑔  represents the spatial feature embedding of 

the target point, and 𝑃𝑖  refers to the 𝑖th point in the nearest 
neighborhood of the target point 𝑃 . Following feature 
complementation by k-nearest neighbors (kNN), the spatial 
feature embeddings of the point cloud modality attain the same 
size as the image feature embeddings of the depth image 
modality and the normal vector angle image modality after 
Swin-T feature extraction. To efficiently fuse the point-to-
point features of the three modalities, we conduct global 
feature fusion: 

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑀𝐿𝑃(𝐹𝑝2𝑔 ⊕ 𝐹𝑑𝑝𝑡 ⊕ 𝐹𝑛𝑣) (3) 

Among them, 𝐹𝑑𝑝𝑡  and 𝐹𝑛𝑣  represent the feature 

embeddings of the depth image and normal vector angle image, 
respectively, after each has been extracted by the Swin-T 
module. To mitigate overfitting, the global feature fusion 
section only takes the features of the three modalities as input 
into the multilayer perceptron after concatenation. 

After acquiring the global features, they are fused with the 
feature embeddings of each modality. Initially, the global 
features are integrated with the point cloud modalities: 

𝐹𝑓𝑝 = 𝑀𝐿𝑃(𝑃𝑜𝑜𝑙(𝐹𝑔𝑙𝑜𝑏𝑎𝑙) ⊕ 𝐹𝑑𝑝𝑡) (4) 

The spatial feature embedding of the point cloud modal 
data, denoted as  𝐹𝑑𝑝𝑡  , undergoes processing by the point 

cloud network. As the size of 𝐹𝑔𝑙𝑜𝑏𝑎𝑙  differs from that of 𝐹𝑑𝑝𝑡  , 
we downsample 𝐹𝑔𝑙𝑜𝑏𝑎𝑙  using the point cloud indexes utilized 

in obtaining 𝐹𝑝2𝑔 . Subsequently, we fuse the spatial feature 
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embedding of the point cloud modality with the global features 
through the multilayer perceptron to derive the fusion of global 
features denoted as 𝐹𝑓𝑝 . Following this, we proceed with the 

feature fusion of global features with the depth image 
modalities and normal vector angular modalities: 

𝐹𝑓𝑑 = 𝑀𝐿𝑃(𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ⊕ 𝐹𝑑𝑝𝑡) (5) 

𝐹𝑓𝑛 = 𝑀𝐿𝑃(𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ⊕ 𝐹𝑛𝑣) (6) 

This concludes the fusion of global features with the three 
modalities in a straightforward manner, providing each 
modality with feature embedding from depth, angle, and space, 
while simultaneously preventing overfitting. This global 
feature fusion mechanism is employed at every stage of the 
encoder-decoder structure to facilitate interaction among depth, 
angle, and spatial features. 

E. 3D Key Point Pose Detection Algorithm Transformed 

based on CBAM Mechanism 

Recently, He et al.'s PVN3D [10] introduced a 6D pose 
estimation algorithm based on 3D keypoints, while their 
FFB6D[11] work proposed SIFT-FPS, which enhances 
PVN3D's 3D keypoint selection algorithm by leveraging 
object texture and geometric information more 
comprehensively. In this study, we adopt the detection head 
algorithm from FFB6D. Specifically, we initially select the 3D 
keypoints of each target object using the aforementioned 
feature extraction module and then estimate the pose matrix 
through least squares fitting. 

Multi-target 3D Keypoint Localization Detection Head: 

Having obtained dense feature embeddings encompassing 
depth, angle, and spatial information from a single depth 
image, we proceed to fit the translation matrix, rotation matrix, 
and instance segmentation image. Drawing inspiration from 
He et al.'s FFB6D, we employ a farthest point sampling 
algorithm (SIFT-FPS) to sample keypoints on the target 
object's surface. This method ensures that keypoints are not 
only uniformly distributed but also possess distinctive textures 
for easy detection. To enhance the dense feature embedding's 
accuracy in instance segmentation, translation matrix keypoint 
regression, and rotation matrix keypoint regression, we 
incorporate a spatial and channel-based self-attention module 
into the detection head module, inspired by the CBAM [25] 
algorithm. This addition strengthens the dense feature 
embedding's capability to perform these tasks independently 
and enhances the stability of pose regression. 

Least Squares Recovery of the Attitude Matrix: 

To compute the rotation matrix 𝑅 and translation matrix 𝑇 
of the target object relative to the camera coordinate system, 

we utilize the N 3D keypoints 𝑝𝑖
𝑜𝑏𝑗

 obtained from the 3D 

keypoint localization module, along with the corresponding N 
3D keypoints 𝑝𝑖

𝑐𝑎𝑚 in the camera coordinate system, as inputs. 
Subsequently, we regress R and T using the least squares 
method to minimize squared loss [26]. 

𝐿𝑠𝑞𝑢 = ∑  

𝑁

𝑖=1

(𝑝𝑖
𝑐𝑎𝑚 − (𝑅 ⋅ 𝑝𝑖

𝑜𝑏𝑗
+ 𝑇))2 (7) 

IV. EXPERIMENTS  

We assess the performance of our method using two 
benchmark datasets: the YCB-Video dataset[27] and the 
LineMod dataset[28]. Our proposed DMG6D method 
demonstrates significant improvements over state-of-the-art 
benchmark algorithms on both datasets. Additionally, we 
conduct comprehensive ablation experiments to illustrate the 
effectiveness of our proposed algorithm. 

A.  Benchmark Datasets 

The YCB-Video dataset comprises 92 RGB-D videos, 
encompassing 21 target objects, with a total of 133,827 frames 
of 640x480 images. Following the approach outlined in [29], 
we partition the dataset into training and testing sets, and, as 
[30], we apply hole filling to the depth images. 

The LineMod dataset includes 13 RGB-D videos featuring 
non-textured objects in cluttered scenes. We follow the 
methodology from [31] to divide the dataset into training and 
testing sets. Additionally, we generate 20,000 synthetic images 
for each object to augment the training process. 

B.  Evaluation Metrics 

We employ two commonly used 6-DoF pose estimation 
evaluation metrics to measure the performance of the 
algorithm: Average Distance Distance (ADD) and Average 
Distance Distance-S (ADD-S) [7]. For asymmetric objects, the 
ADD algorithm computes the average distance between the 
predicted pose by the framework and the object's ground truth 
vertices: 

𝐴𝐷𝐷 =
1

𝑚
∑ ∥ (𝑅𝑝 + 𝑇) − (𝑅∗𝑝 + 𝑇∗) ∥

𝑝∈𝑀

(8) 

Here, 𝑝  represents the vertices of the target object, 
𝑀denotes the set of target vertices, 𝑚 is the number of vertices, 
𝑅 and 𝑇 represent the rotation matrix and translation matrix 
predicted by the model, and 𝑅∗, 𝑇∗ represent the ground truth 
rotation matrix and translation matrix. For symmetric objects, 
the algorithm for calculating the Average Distance Distance-S 
(ADD-S) is: 

𝐴𝐷𝐷 − 𝑆 =
1

𝑚
∑ (𝑚𝑖𝑛

𝑝2∈𝑀
∥ (𝑅𝑝1 + 𝑇) − (𝑅∗𝑝2 + 𝑇∗) ∥)

𝑝1∈𝑀

(9) 

In the experiments conducted on the YCB-Video dataset, 
we follow the approach outlined in prior work [7], utilizing the 
Area Under the Curve (AUC) of the precision-recall curve 
based on the ADD(S) metric as the evaluation metric. For the 
LineMod experiments, we adhere to the methodology 
established in previous research [32], employing the Average 
Distance Distance metric where the distance is less than 10% 
of the object's diameter (ADD-0.1d) as the evaluation criterion. 

C.  Implemention Details 

DMG6D uses two encoder-decoder structures to extract 
robust features from a single depth map. For image modality, 
we use Swin-T as the encoder and UperNet as the decoder. For 
point cloud modal feature extraction, we follow the PVN3D 
method to randomly sample 19,200 points of the point cloud 
and use RandLA-Net for feature representation learning. At 
each codec layer of the three network streams, omnidirectional 
feature interaction fusion is constructed using a global feature 
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fusion module based on shared MLP. After processing 
throughout the omnidirectional fusion network, 19,200 3D 
keypoints are generated, each with a 128-dimensional feature 
𝐹𝑝, and these dense feature embeddings are then fed into the 

rotation matrix estimation module, translation matrix 
estimation module, and instance segmentation module. The 
rotation and translation matrix estimation modules use L1 
Loss[33] and the instance segmentation uses Focal Loss[34], 
and we follow [10] for a multi-task loss scheme to jointly 
optimise the three tasks. The training process was done on a 
single NVIDIA RTX3090Ti GPU with Batch Size set to 8. 
Each object of LineMod was trained for 30-40 epochs, and the 
YCB-Video dataset was trained for 50 epochs. 

D.  Evaluation on Two Benchmart Datasets 

We assessed the proposed model using both the LineMod 
dataset and the YCB-Video dataset. 

Evaluation on the LineMod dataset: Table 1 presents the 
quantitative evaluation results of our proposed method on the 

LineMod dataset. These results remain unrefined by 
subsequent processing and are compared against other state-
of-the-art methods. For asymmetric objects, we compute the 
Average Distance Distance (ADD) metric when the distance is 
less than 10% of the object's diameter (ADD<0.1d), while for 
symmetric objects, we compute ADD-S<0.1d. Additionally, 
we classify our results into three groups based on the input 
modality: RGB, RGB-D, and Depth Only. The findings reveal 
that our proposed method surpasses the current state-of-the-art 
methodologies by 1.4% across all methods utilizing depth data 
as input. Furthermore, our approach outperforms certain 
methods relying on RGB and RGB-D data inputs within 
specific categories, underscoring the efficacy of the DMG6D 
framework in feature extraction from depth data. 
Visualizations in Fig. 6 depict the reprojected effects of the 
proposed algorithm on select LineMod objects, demonstrating 
that DMG6D consistently and accurately predicts the spatial 
position of the target object. 

TABLE I.  EVALUATION ON THE LINEMOD DATASET. THE RESULTS ARE REPORTED USING THE ADD<0.1D METRIC. SYMMETRIC OBJECTS ARE 

DENOTED WITH AN ASTERISK (*), AND WE HIGHLIGHT THE OPTIMAL PERFORMANCE WITHIN EACH INPUT MODALITY GROUP IN BOLD. 

INPUTS RGB RGB-D Depth Only 

METHODS PoseCNN[7] PVNet[8] DPOD[35] 
DenseFusi

on[9] 
PVN3D[10] 

FFB6D[

11] 

CloudAAE[

36] 
CATRE[21] SwinDePose[31] OURS 

ape 77.0 43.6 87.7 92.3 97.3 98.4 74.5 63.7 95.4 96.6 

benchvise 97.5 99.9 98.5 93.2 99.7 100.0 96.6 98.6 98.2 99.5 

camera 93.5 86.9 96.1 94.4 99.6 99.9 65.6 89.7 96.9 99.1 

can 96.5 95.5 99.7 93.1 99.5 99.8 90.2 96.1 98.2 99.3 

cat 82.1 79.3 94.7 96.5 99.8 99.9 90.7 84.3 98.7 98.7 

driller 95.0 96.4 98.8 87.0 99.3 100.0 97.3 98.6 98.5 100.0 

duck 77.7 52.6 86.3 92.3 98.2 98.4 50.0 63.9 92.7 94.9 

eggbox* 97.1 99.2 99.9 99.8 99.8 100.0 99.7 99.8 100.0 99.9 

glue* 99.4 95.7 96.8 100.0 100.0 100.0 93.5 99.4 100.0 100.0 

holepuncher 52.8 82.0 86.9 92.1 99.9 99.8 57.9 93.2 93.6 98.6 

iron 98.3 98.9 100.0 99.0 99.7 99.9 85.0 98.4 96.9 99.5 

lamp 97.5 99.3 96.8 95.3 99.8 99.9 82.1 98.7 99.1 99.9 

phone 87.7 92.4 94.7 92.8 99.5 99.7 94.4 97.5 98.8 99.9 

MEAN 88.6 86.3 95.2 94.3 99.4 99.7 82.1 90.9 97.5 98.9 

Figure 6.  Visualization of DMG6D on LineMod Objects. We demonstrate the visual effects of DMG6D on LineMod objects. We transform the predicted 

3D keypoints into the camera coordinate system and project them onto the image using the camera's intrinsic matrix. To enhance the visualization of the 

results, we utilize RGB images to display the outcomes, with the projected points shown in green. 
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TABLE II.  EVALUATION ON THE YCB-VIDEO DATASET. RESULTS 

ARE REPORTED USING THE ADD(S) METRIC, AND WE HIGHLIGHT THE 

OPTIMAL PERFORMANCE IN BOLD. 

INPUTS Depth Only 

METHODS 
CloudPose 
(ICP)[12]  

CloudAAE 
(ICP)[36]  

Ours 
(ICP) 

MEAN 93.0 94.0 97.8 

Tested on the YCB-Video dataset: Table 2 presents the 
quantitative evaluation results of the proposed method against 
other state-of-the-art methods. We calculate ADD for 
asymmetric objects and ADD-S for symmetric objects. The 
results indicate a 3.8% improvement over the current state-of-
the-art method CloudAAE and a 4.8% enhancement over the 
classical method CloudPose illustrated in Fig. 1.a, among all 
methods utilizing depth data as input. This underscores the 
robustness of the DMG6D framework in handling complex 
multi-object scenarios. 

E.  Ablation Study 

In this section, we conduct an ablation study on the 
introduction of angular prior information for deep data feature 
mining effective shape and the global fusion mechanism that 
is most important for model performance. For accurate 
evaluation, we conducted tests on the YCB-Video dataset. The 
results shown in Table 3 are the average ADD(S) on the YCB-
Video dataset. 

TABLE III.  RESULTS OF ABLATION STUDY. WE INVESTIGATED THE 

IMPACT OF THE GLOBAL FUSION MECHANISM ON THE 6D POSE ESTIMATION 

RESULTS ON THE YCB-VIDEO DATASET. "GFF" DENOTES THE GLOBAL 

FEATURE FUSION MECHANISM, WHILE "NV" REPRESENTS THE NORMAL 

VECTOR ANGLE MODALITY INFORMATION. 

Aspect Average ADD(S) 

Full Model 97.8 

w/o GFF 95.7 

w/o NV 95.9 

In order to verify the effectiveness of using the global 
fusion mechanism and normal vector angular prior 
information for learning deep data feature embeddings, we 
conducted an ablation study on the YCB-Video dataset. For 
comparison, we remove the global feature fusion mechanism 
with normal vector angle modal information at each layer of 
the codec process respectively, and the results in Table 3 show 
that the complete model with global feature fusion mechanism 
obtains better pose estimation results, highlighting the 
superiority of the global feature fusion mechanism in the face 
of the multi-information stream feature extraction process. 
Meanwhile, the network with normal vector angle prior 
information also performs better, indicating that the 
introduction of new modalities from the physical geometry 
perspective can effectively improve the ability of neural 
networks to understand image features. 

V. CONCLUSION 

In this paper, we present the DMG6D framework, a novel 
approach aimed at advancing the state-of-the-art in pose 
estimation using single depth images. Our framework 
introduces a distinctive fusion mechanism tailored for 
extracting depth, angular, and spatial features, thereby 
enhancing the richness of information obtainable from 
individual depth images. Notably, our methodology exhibits 
remarkable versatility, facilitating seamless integration of 
information from various modalities while mitigating the risks 

associated with overfitting, owing to its inherent simplicity 
and efficiency. 

Furthermore, we propose a methodology that significantly 
improves multi-target keypoint localization detection by 
incorporating a self-attentive mechanism. This enhancement 
ensures the extraction of robust directional features essential 
for precise target keypoint fitting, thereby enhancing the 
accuracy and reliability of pose estimation. 

The efficacy of our proposed framework is substantiated 
through empirical validation on benchmark datasets such as 
YCB-Video and LineMod. Our results demonstrate significant 
performance enhancements over existing techniques for 6D 
pose estimation from single depth images, underscoring the 
superiority of our approach. 

Moreover, we expand the scope of depth modalities by 
extracting novel representations of physical geometry angles. 
This augmentation enables data-driven neural networks to 
incorporate crucial insights into physical geometry, 
transcending the limitations of purely data-driven 
methodologies. We envision that this advancement will inspire 
future research, facilitating the extraction of latent information 
from single modalities across diverse domains and fostering 
continuous innovation in the field. 
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